1 Jan 7: Elementary number theory

The goal of this lecture is to prove Fermat’s little theorem.

Theorem 1.1. Let p be a prime, and let a be any integer. Then a? — a is
divisible by p.

1.1 Modular arithmetic [2.7, 2.9]

An equivalence relation on a set S is a relation ~ between certain pairs of
elements of S. We write a ~ b if a and b are equivalent. An equivalence relation
is required to be

e transitive: if a ~ b and b ~ ¢, then a ~ c.
o symmetric: if a ~ b, then b ~ a.
o reflexive: for all a, a ~ a.
An equivalence relation ~ partitions S into equivalence classes.
Definition 1.2. Let n be a positive integer. For integers a, b, we write
a=b (mod n)
if @ — b is divisible by n, i.e., a — b = nk for some integer k.

Lemma 1.3 (Addition and multiplication modulo n). If ' = a (mod n) and
b =b (mod n), then a’ + b =a+b (mod n) and a'b’ = ab (mod n).

Proof. Suppose a' = a +nk and b’ = b+ nf. Then
a+b =(a+b)+nk+1),

and
a'b = ab+ n(al + bk + kf). O

Definition 1.4. Let Z/nZ denote the set of equivalence classes of Z with respect
to the equivalence relation =. These equivalence classes are also referred to as
congruence classes modulo n.

By the lemma above, addition and multiplication of congruence classes mod-
ulo n is well-defined. If we write @ to denote the congruence class of a, then

a+b=a+b,

and similarly o
ab = ab.
The associative, commutative, and distributive laws carry over for addition
and multiplication of elements of Z/nZ.

Example 1.5. Z/67Z has 6 elements. The elements 2 and 8 are the same element
since 2 = 8 (mod 6).

We have 2 -5 = 10, and 8 -5 = 40. Fortunately, 10 = 40 since 10 = 40
(mod 6). We usually take the remainder when divided by 6 and say 2 -5 = 4.



1.2 Bezout’s lemma [2.3]

We recall division with remainder: let n be an integer, and let a be a positive
integer. Then there exists an integer ¢ and an integer 0 < r < a such that

n=aq-+r.

Definition 1.6. Let a and b be integers, not both zero. The greatest common
divisor of a and b, denoted ged(a, b), is the largest integer which divides both a
and b. If ged(a,b) = 1, we say that a and b are coprime or relatively prime.

The GCD satisfies the property that
ged(a,b) = ged(a + bk, b)

for any integer k. Indeed, if d divides both a and b, then d divides both a + bk
and b, and conversely.

As such, we can compute GCD’s using the Fuclidean algorithm, which works
by repeated division with remainder.

Example 1.7. For example, for a = 314, b = 136, since
314 =2-136+42, 136 =3-42410, 42=4-10+2,
we have
ged(314,136) = ged(42, 136) = ged(42,10) = ged(2,10) = 2.

Proposition 1.8 (Bezout’s lemma). For any integers a and b, not both zero,
there exist integers v and s such that

ged(a,b) = ra + sb.

Proof. Let d = ged(a,b) Let ¢ be the smallest positive integer that can be
expressed as
{=ra+sb

for some 7 and s.
We claim that £|a. Use division with remainder to write

a=Lg+m
for 0 < m < £. Then m can also be expressed in the form ra + sb:
m=a—Llqg=a—q(ra+ sb) = (1 —qr)a— (gs)b.

Since ¢ was assumed to be minimal, m = 0, so ¢|a.
Similarly, £]b, so ¢ divides both a and b. Since d is the greatest common
divisor,

£ <d.
On the other hand, d divides both ra and sb, so d also divides ¥, so
d<\t.
Thus, ¢ = d. O



Corollary 1.9. Let e be an integer which divides both a and b. Then e divides
ged(a, b).

Proof. Let
ged(a,b) = ra + sb.

Since e divides both terms on the right hand side, it also divides ged(a,b). O

Corollary 1.10. Let p be a prime, and let a and b be integers. If plab, then
pla or p|b.

Proof. Suppose that p divides ab, but p does not divide a.
Since p is prime, ged(a,p) = 1, so by Bezout’s lemma there exist r,s € Z
such that
1 =ra+ sp.

Multiplying both sides by b,
b =rab+ spb.
Both terms on the right are multiples of p by the assumption p|ab, so p|b. O

Corollary 1.11 (Z/pZ has inverses). Let p be a prime, and let a be an integer
which is not divisible by p. There exists an integer b such that ab =1 (mod p).

Proof. As in the proof above, there exist r, s € Z such that
1 =ra+ sp.

So ra =1 (mod p). Clearly, we can take b = r. O

1.3 Proof of Fermat’s little theorem

Proof. If a is divisible by p, then it is apparent that a? — a is divisible by p.
Assume p 1 a.

1. Counsider the set
{132a"'ap_1}
of nonzero congruence classes modulo p. Then consider the set
{@,2a,...,(p—1)a}
of congruence classes modulo p.

2. We claim that they’re the same set. Indeed, since both sets have p — 1
elements, we just need to show that j appears in the second set for every

je{l,....p—1}
In other words, we want ka = j (mod p) for some k # 0 (mod p). Let b
be such that ab =1 (mod p), and let k = jb. Then

ka = jba =3 (mod p).
Obviously k # 0 (mod p) since j £ 0 (mod p).



3. Then

1-2---(p—1) = 2a)---(p—1)a

ao
1-2---(p—1)-a’* (mod p).

Multiplying both sides by an inverse of (p — 1)! gives

a®”'=1 (mod p).

1.4 (Z/nZ)*

Corollaries 1.10 and 1.11 are not true if p is not prime. For example, 4|2 -2 but
4 does not divide 2, and there is no integer b such that 2b =1 (mod 4), because
2b cannot be odd.

Here are some generalizations of them to general n.

Lemma 1.12. Suppose n be a positive integer. If n|ab, then b is a multiple of
n/ ged(a,n).

Proof. Let d = ged(a,n). Suppose
d=ra+ sn.
Then db = rab + snb is a multiple of n, so b is a multiple of n/d. O

Lemma 1.13. Letn be a positive integer, and a be an integer such that ged(a,n) =
1. There exists an integer b such that ab=1 (mod n).

Proof. Since ged(a,n) = 1, there exist r, s € Z such that
1 =ra+ sn.

So ra =1 (mod p), and we can take b = r. O

Definition 1.14. Let (Z/nZ)* denote the set of congruence classes @ modulo
n such that ged(a,n) = 1. Note that this does not depend on the choice of a,
only on a (mod n), since ged(a + nk,n) = ged(a, n) as mentioned previously.

Definition 1.15. In the special case when n = p is a prime, (Z/pZ)* is just
all of the elements of Z/pZ other than 0.

1.5 Least common multiple

Definition 1.16. Let a and b be integers, both not zero. The least common
multiple of a and b, denoted lem(a, b) is the smallest positive integer which is a
multiple of both a and b.



Proposition 1.17. Let a and b be positive integers. If d = ged(a,b) and m =
lem(a, b), then ab = dm.

Proof. Suppose m = ak. Since bjm, by Lemma 1.12, k > b/d, so m > ab/d.
On the other hand, it is clear that ab/d is a multiple of both a and b, so
m < ab/d. O



2 Jan 12: Basic group theory definitions

2.1 Groups, subgroups, and product groups [2.1-2.3, 2.11]

Definition 2.1 (Law of composition). A law of composition on a set S is a
map

SxS— S

For example, addition and multiplication of integers.

Example 2.2. Let T be a set, and let S denote the set of all functions g: T'— T'.
Function composition

(9. f) = gof
is a law of composition on S, where
gof:T L%
i.e., go f is the function ¢t — g(f(t)).

Definition 2.3 (Group axioms). A group is a set G with a law of composition
such that

1. the law of composition is associative: a(bc) = (ab)c for all a,b,c € G.

2. G contains an identity element e € G such that ea = ae = a for alla € G.

3. every element a € G has an inverse, an element b such that ab = ba = e.
Proposition 2.4. In a group,

1. the identity is unique. We often denote it by 1 or 0.

2. the inverse of an element a is unique. We usually denote it by a='.

3. (ab)~t =b"ta" 1.

4. the cancellation law holds: if ab = ac, then b = c.

Proof.

1. If e and ¢’ are both identities, then

! on the left gives b = c.

4. Multiplying both sides of ab = ac by a~
Example 2.5.

1. The set Z/nZ equipped with addition is a group. The identity is the
congruence class 0.



2. For n > 1, the set Z/nZ equipped with multiplication is not a group. The
identity would have to be 1, but 0 does not have a multiplicative inverse.

3. Let p be a prime. Recall that (Z/pZ)* denote the set of nonzero elements
of Z/pZ. Then (Z/pZ)* is a group under multiplication.

4. In general, (Z/nZ)* is also a group under multiplication. Recall that this
is the set of congruence classes @ where a is relatively prime to n.

Definition 2.6. A group G is called commutative or abelian if ab = ba for all
a,beq.

Example 2.7. The examples above are abelian. An example of a nonabelian
group is

GL,(R) := {n x n real matrices with nonzero determinant}.

The order of a group G is the number of elements of G, and denoted |G|. Tt
could be infinite.

Definition 2.8. A subgroup of a group G is a subset H satisfying
1. the identity is contained in H.
2. if a,b € H, then ab € H. This property is referred to as closure.
3. ifa€ H, thena™! € H.

The subgroup is called proper if it is not equal to G or {1}.

Example 2.9. The special linear group
SL,(R) ={A € GL,(R) : det A =1}
is a subgroup of GL, (R).

Definition 2.10. Let G and G’ be groups. The product group consists of the
set of pairs

GxG ={(a,d):a€G,aeqG},

and the law of composition is given by
(a,a’) - (b,b") = (ab,a’d").

The identity of G x G’ is (1¢, 1¢7).



2.2 Permutations [1.5]

Definition 2.11. A permutation (of length n) is a bijectivemap o: {1,2,...,n} —
{1,2,...,n}.

Here is an example of a permutation of length 6.

n (1123456
on) |35 |4|1|2|6

We express permutations using cycle notation which works like this.
e Pick an arbitrary index, for example 1.
e We see where o sends 1. In this example, o(1) =

3
e We see where o sends 3. In this example, o(3) = 4.

We see where o sends 4. In this example, o(4) = 1.

We are back where we started. We indicate the cycleo:1 -3 -4 — 1
using the notation
(134).

We collect all cycles, and usually ignore 1-cycles, The o above is

(134)(25)(6), or (134)(25).

Note: the cycle notation is not unique. We can also express (134) as
(341) or (413)
by choosing a different starting index.
Example 2.12. In cycle notation,
(1452) o (134)(25) = (135).

In general, bijective functions from a set T to itself form a group under
composition. The identity is the function id(t) = ¢, and inverses exist by the
requirement that the functions are bijective.

Definition 2.13. The group of permutations of the set {1,2,...,n} is called
the symmetric group and denoted S,,. It has order n!

Example 2.14. The group Ss has 6 elements. Let x = (123) and y = (12).
Since z is a 3-cycle and y is a 2-cycle,

P=1, =1 (©)
One can verify without computation that the six elements

Lz, 2%y, zy, 2%y



are distinct, using the cancellation law.
So S35 consists of these 6 elements. Observe that

yr = (12) o (123) = (23) = (132) 0 (12) = z%y. ()
This rule lets us move all occurrences of y to the right. For example,
ol ety = a?yaty = 2® (ya)ay = 2®(@%y)ay = a(y2)y = 2(2y)y = 1.

The elements = and y and the equations (©) and () are called a set of
generators and relations for S3, and we write

SB = <Z’,y|(£3:1,y2: l,yx::c2y>

This is called a presentation of the group Ss.

2.3 Orders [2.4]

For any x € G, the cyclic subgroup generated by = consists of the elements
.. ,x_Q,x_l, 1,x,x2, .

and is denoted (z).

Definition 2.15. Let  be an element of a group G. The order of x is the
smallest positive integer n such that z™ = 1.
If no such integer exists, then « has infinite order.

Proposition 2.16. Let x be an element of G of order n. Let k and j be integers.

1. If x* =1, then k = nq for some integer q.

2. If 2% = 29, then k — j = nq for some integer q.
Proof.

1. Let k =ng+r for 0 <r < n. Then if ¥ = 1, since " = 1, we have

1=gb =™t = (g")%" = 2",
By minimality of n, we must have r = 0.

2. Follows from 1. O

Example 2.17. Some applications of the above properties of orders:

1. If = has order n, then (z) is a finite subgroup of order n, consisting of the
elements



2. Let G = (Z/pZ)*. Fermat’s little theorem is the statement that for any
a € G,
a?~t =1,

Thus, the order of every element of G divides p — 1.

The formulation of Fermat’s little theorem in 2. above generalizes to any
finite group.

Theorem 2.18 (Lagrange’s theorem). Let G be a finite group. Then for any
a € G,
alel = 1.

Proof for abelian groups. The proof is similar to the proof of Fermat’s little
theorem we saw in Lecture 1.

Let G ={g1,...,9n}, where n = |G|. Then G = {ag1,...,ag,} is the same
set because the (left) multiplication by a map G — G is bijective; it has inverse
(left) multiplication by a=!.

Taking the product of all elements in G,

gl...gn :a’n(gl'..gn)'
This calculation requires G to be abelian. By cancellation, a™ = 1. O

Corollary 2.19. In a finite group G, the order of every element divides |G)|.

10



3 Jan 14: Homomorphisms and isomorphisms

3.1 Dihedral group

Let A1As--- A, be a regular n-gon, with center O. The dihedral group D,
consists of the symmetries of the regular n-gon. It has order

|D,| = 2n.
e There are n rotations in D,,. Let r denote rotation by 27 /n around O. It
satisfies
r* =1
The other rotations are
1,rr? pnt

oS s

\ v
/
/

— = — S
aYl

\

/

Let s denote reflection across OA;. It satisfies
s2=1.
The other reflections are
n—1

5,178,128, ..., r" s,

The transformations r and s satisfy rsr = s, since

11



r)

)) A\

rsSyv ) =swWw)

Sr(v)

The dihedral group has the presentation
D, ={(rs|r"=1,8>=1rsr=s).
The third relation can equivalently be written
rsr=s, sr=r""ls.
We also have r*sr* = s and sr¥ = r"=*s.
For example,
D3 = (r,s|r®=1,8>=1,sr =r%s).

3.2 Definitions [2.5, 2.6]

Definition 3.1. Let G and G’ be groups. A homomorpmism is a map ¢: G —
G’ such that
p(ab) = ¢(a)p(b)
for all a,b € G. The product ab is taken in G, and the product ¢(a)p(b) is
taken in G’.
In other words, a homomorphism is a map which is compatible with the laws
of composition on G and G’.

Proposition 3.2. Let o: G — G’ be a homomorphism.
1. It maps the identity to the identity: p(lg) = p(lg’).
2. It maps inverses to inverses: p(a™t) = p(a)™t.
Proof. Since ¢ is a homomorphism,
e(la)e(la) = ¢(la),
s0 ¢(1lg) = 1gr. In addition,

pla™")p(a) = p(la) = lar,

12



Definition 3.3. A homomorphism ¢: G — G’ is an isomorphism if it is bijec-
tive.

We say that two groups G and G’ are isomorphic if there exists an isomor-
phism ¢: G — G'.

Example 3.4. The map ¢: Z/6Z — (Z/7Z)* given by

a [0]1]|2|3]4]5]| (modH®6)
w@ |1]3]|2[6]4]5]| (modT7)

is an isomorphism. It is bijective by the chart above. It is a homomorphism
because it is actually given by

p(@) =3* (mod7),

SO

@(a+b) = 390 =3a. 30 = »(@)p(b).
It is well defined by Fermat’s little theorem, because
3016k = 3¢ (mod 7)
since 35 =1 (mod 7), so 3% (mod 7) only depends on a (mod 6).

3.3 Sign of permutations [1.5]

A permutation matriz is an n x n matrix with entries in {0, 1}, which has exactly
one 1 in each row and column. Every permutation matrix has determinant equal
to £1.

Definition 3.5. Given a permutation o, the associated permutation matrix is
the matrix with
Py =1
for 1 < i < n, and 0 in all other entries. This is the unique matrix with the
property
! To-1(1)
Plil= :
Tn Lo—1(n)
Example 3.6. If 0 = (123), then the associated permutation matrix P is below
and satisfies

0 0 1 T I3
PX=11 0 0 To| = |T1
0 1 0| [x3 To

Definition 3.7. The sign of ¢ is the determinant det P = 41 of its permutation
matrix.

Proposition 3.8. If o and 7 are permutations with associated permutation
matrices P and Q, then the permutation matriz of o7 is PQ.

Corollary 3.9. The map sign: S, — {£1} sending o to its sign is a homo-
morphism of groups. (Here {£1} is a group under multiplication.)

13



3.4 Kernel and image [2.5]

Definition 3.10. Let ¢: G — G’ be a homomorphism of groups. The image
of ¢ is
im(p) = {z € G’ : z = ¢(a) for some a € G}.

The kernel of ¢ is
ker(¢) ={a € G: p(a) =1¢'}.

Lemma 3.11. The kernel and image of a homomorphism ¢: G — G’ are sub-
groups of G and G, respectively.

Proof. We verify closure in each case and omit the verification of the other
axioms.

1. Suppose z,y € im(p). Then z = ¢(a), y = ¢(b) for some a,b € G. So
zy = p(ab) is also in im(p).

2. Suppose a,b € ker(p). Then p(ab) = p(a)p(b) = lg - lgr = 1gr, so
ab € ker(y). O

Lemma 3.12. A homomorphism ¢: G — G’ is injective if and only if ker(p)
is the trivial subgroup {1g}.

Proof. First suppose ¢ is injective. Since ¢(lg) = lgr, this means that if
p(a) = 1¢r, then a = 1¢g, so ker(y) is the trivial subgroup.
Now, suppose ker(p) = {1g}. If ¢(a) = ¢(b) for some a,b € G, then

plab™") = p(a)p(b) ™ = 1.
Thus, ab™! = 1¢, so a = b. O
Example 3.13. Consider the map
p: ZJ157Z — Z/3Z x Z/5Z,

which sends
a— (a,a).

One can check that this is well-defined and a homomorphism.
The kernel of ¢ consists of all congruence classes @ such that

a=0 (mod3)and a=0 (mod 5).
Since 3 and 5 are relatively prime, this implies that a = 0 (mod 15), so ker(y)
is trivial.

The lemma then tells us that ¢ is injective. Both the target and the source
have 15 elements, so ¢ is bijective, and thus it is an isomorphism.

14



3.5 Normal subgroups

However, not every subgroup of G can be the kernel of some homomorphism!
The kernel always has the following property.

Definition 3.14. Let a,g € G. The element gag~' is called the conjugate of

a by g. We say that two elements a and a’ are conjugate if there exists g € G

such that ¢’ = gag™'.

Definition 3.15 (Normal subgroup). A subgroup N of G is normal if for all
a € N and all g € G, the conjugate gag™~! is also in N.

Proposition 3.16. The kernel of a homomorphism ¢: G — G’ is normal.

Proof. Suppose a € ker(y). For any g € G, we have

plgag™) = ¢(9) - lar-9(9) " = lar. m
Example 3.17.

1

1. If G is abelian, then every subgroup is normal, because gag™" = a for all

a, g.
2. In general, the center of a group G is
{z€G:zg=9z VgeG}.
It is always a normal subgroup of G.

3. SL,(R) is a normal subgroup of GL,, (R) since it is the kernel of the homo-
morphism det: GL,(R) — R*. (Here, R* denotes the group of nonzero
real numbers under multiplication.)

Example 3.18. Recall our usual presentation
SB = <x,y|x3 = 17y2 = ].,y(E = x2y>

The cyclic subgroup generated by y, which consists of the elements {1,y}, is
not normal. This is because

ryr ! = zyz? = x(2y)z = z2?(2%y) = 2%y,

which is not in {1,y}.

3.6 Isomorphism classes [2.5]

Lemma 3.19. If p: G — G’ is an isomorphism, then its inverse p~1: G' — G
18 also an isomorphism.

As mentioned earlier, we say that G and G’ are isomorphic if there exists
an isomorphism ¢: G — G’. The isomorphism class of G consists of all groups
isomorphic to G.

15



Example 3.20. Suppose = € G is an element of order n. The cyclic subgroup
(x) is isomorphic to Z/nZ. The map

a

p(a) =
is an isomorphism ¢: Z/nZ — (z).

Example 3.21. The groups S3 and Ds are isomorphic since they both have
the presentation
(z,yla® = 15" = 1,yz = 2°y).

16



4 Jan 21: Cosets

4.1 Cosets [2.6, 2.8]

Definition 4.1 (Left cosets). Let H be a subgroup of a group G. Let a be any
element of G. We denote by aH the set

aH = {g € G:g=ah for some h € H}.

In other words, aH = {ah : h € H}. This set is called a left coset of H.

Example 4.2. Let G be the additive group Z, and let H = 100Z be the set of
all multiples of 100, i.e.,

H ={...,—200,—-100,0,100,200,...}.

H is a subgroup of Z.

Recall that elements of Z/100Z are congruence classes modulo 100. The
element we denote @ is the set of all integers which are congruent to a (mod 100),
SO

3={...,-197,-97,3,103,203,...} = {3+ h : h € 100Z}.
Thus 3 = 3 4+ 100Z is a left coset of H. Note also that
3 4+ 100Z = 103 + 100Z = 12403 + 100Z,

etc.

Let ¢: G — G’ be a homomorphism. Let K = ker(yp). We know that K is
the set of all elements of G which map to 1g/. In general, for ¢’ € G, the set of
all elements of G which map to ¢’ is called the fiber over ¢'.

Proposition 4.3. Let ¢: G — G’ be a homomorphism. Let a € G be any
element. The set of all elements x € G such that p(x) = @(a) is the left coset
aK.

Proof. Suppose p(z) = p(a). Then

pla™'z) = p(a) tp(z) = 1,

so a~'z € K, which implies z = a(a™'x) € aK.
On the other hand, if z € aK, then x = ak for some k € K, so

17



4.2 Counting formula [2.8]

We can also view left cosets of H as equivalence classes for the following equiv-
alence relation.

Let H be a subgroup of G. We define
a ~ b if b= ah for some h € H.

We check that it is indeed an equivalence relation.

o (Transitivity) If a ~ b and b ~ ¢, then b = ah; and ¢ = bhg, so ¢ = ahihs,
S0 a ~ c.

e (Symmetry) If a ~ b, then b = ah so a = bh~!, so b ~ a.
o (Reflexivity) We have a = a - 1g, so a ~ a.
Corollary 4.4. The left cosets of H partition G.
Example 4.5. Recall again that
Sy = (z,ylz® = 1,9* = 1,yz = 2°y)

has the 6 elements
Lz,2%y,zy, a’y.

Let H = (y) be the subgroup generated by y. We calculate the 6 sets aH:
H={l,y}, zH={z,zy}, ’H = {xz,ny},

and
yH = {y,1}, ayH = {zy,z}, 2°yH = {2%y,2*}.

Note that these are the same as the three above. So there are 3 distinct left
cosets of H

H={ly}=yH, oH=/{zzy}=ayH, o°H={2%2%}=a’yH,
and these three sets partition Ss.

Definition 4.6. The number of left cosets of H is called the index of H in G
and denoted [G : H]. If |G] is infinite, it could be infinite.

Lemma 4.7. All left cosets aH of H have the same number of elements. (It
could be infinite.)

Proof. We have a bijection H — aH given by h — ah, with inverse g — a~'g.
Thus aH has |H| elements. O

Theorem 4.8 (Counting formula). For any subgroup H of G,
Gl = |H|[G : H).
Proof. This is because G is partitioned into [G : H] equivalence classes, each of

which has |H| elements. O

18



4.3 Lagrange’s theorem [2.8]
Theorem 4.9. Let H be a subgroup of a finite group G. Then |H| divides |G]|.

Proof. This follows directly from the above theorem. O

Remark 4.10. Let G be a finite group, and let a € G be any element Let n
be the order of G. Then Lagrange’s theorem tells us that n divides |G| because
the cyclic subgroup

H={(a)={l,a,...,a" '}

satisfies |H| = n. From this we also get
al®l = 1.

Corollary 4.11. Let p be a prime. Any group G of order p is isomorphic to
Z/pZ.

Proof. Let a be any element of G other than the identity. Then a has order p, so
the subgroup (a) has p elements. So G = (a), which is isomorphic to Z/pZ. O

Proposition 4.12 (Groups of order 4). Let G be a group of order 4. Then G
is isomorphic to either Z/AZ or 7.)27 x 7./27.

The dihedral group Ds is isomorphic to Z/27Z x Z/27. 1t is also called the
Klein Four Group.

Proof. By the corollary of Lagrange’s theorem mentioned last time, the order
of every element divides |G| = 4.
Case 1: G has an element x of order 4. Then G = (x) so it’s isomorphic to
7/47.
Case 2: Every element of G other than the identity has order 2. Then for
any x,y € G, we have
ryxry =1,

which (using 22 = y? = 1), implies yr = xy. So G is abelian.
We can check directly that the map

727 x 7.)27. — G

given by
(0,0) = 1g, (1,0)—z, (0,1)—y, (1,1)—zy

is an isomorphism. O
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4.4 More on the counting formula [2.8]
Corollary 4.13. For any homomorphism ¢: G — G,
|G| = |ker()||im()].

Proof. By Proposition 4.3, the cosets of ker(y) are the nonempty fibers of ¢,
which are in bijection with im(p). Thus, G is partitioned into |im(yp)| cosets of
ker(¢), from which the formula follows.

Proposition 4.14. If G O H D K is a chain of subgroups of a group G, then
[G:K]=|G: H|[H : K].
Proof. Suppose [G : H| =n, and [H : K] = m. Then we have partitions
G=a1HU---Ua,H,

and
H=0L,KU---Ub,, K.

The second line lets us note that each a;H, for 1 < j < n, is partitioned into m
cosets of K

ajH = ajblK y---u ajme.
So G is partitioned into mn cosets of K, so [G : K| = mn.

The cases where one of [G : H] or [H : K] is infinite are similar. O

4.5 Right cosets [2.8]
Definition 4.15. Let H be a subgroup of G. A right coset of H is a set
Ha:={ha:he H}.

Proposition 4.16. If H is a normal subgroup of G, then gH = Hg for all
gea@qG.

Proof. For any h € H, we have

gh=ghg ‘g€ Hg,

where we have used the assumption ghg~™' € H since H is normal. Thus,

gh C Hg. Similarly, Hg C gH. U

Example 4.17. We return to the subgroup H = (y) of S3, which is not normal.
Earlier, we calculated the left cosets

{Ly}, {zay}, {2° 2%}

We similarly calculate the right cosets

H= {lvy}v Hzx = {x,yx} = {mvl'Qy}v Hz* = {xZ,ya:Q} = {xz,a:y},
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and

Hy={y,1}, Hzy={zy,yzy} = {zy,2?}, Hz’y= {2%y,y2’y} = {2%y,z}.

Thus, there are also three distinct right cosets

{Ly}, A{z,2%y}, {2% a2y},

which also partition G, but they are different from the left cosets.
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5 Jan 26: Quotients and correspondence theo-
rem

5.1 Quotients [2.12]

In this subsection, we define, for a normal subgroup N of G, the quotient group
G/N. Note that the quotient group construction only applies when N is normal.
Recall that we had an equivalence relation on G given by

a~bif b= an for some n € N.

The equivalence classes are the left cosets of IV.

Definition 5.1. The elements of G/N are the left cosets aN. The group oper-
ation - on these elements is given by

(aN) - (bN) = (ab)N.

Example 5.2. For G = Z and H = nZ, the cosets are @ = a + nZ, the
congruence classes modulo n. The quotient group given by the above definition
is the same as the group which we have already been denoting Z/nZ.

Before we go on, we need to check that the group operation in Definition 5.1
is actually well-defined, since a coset can be written as alN for different choices
of a. In fact, recall that

aN =d'N < d €aN.
Lemma 5.3. If aN = d’N and bN = VN for a,b,ad’,b' € G, then
(ab)N = (a'b")N.

Proof. The assumptions tell us that a’ = an; and b’ = bny for some ny,n, € N.
Then
a't! = anibng = ab(b~'nib)ny € abN,

where we have used the fact that b~1n;b € N since N is normal. Thus, (a’b')N =
(ab)N. O

Thus, we have shown that the group operation defined on G/N actually
makes sense. The group axioms can easily be checked. The identity of G/N is
the coset 1- N = N.

Remark 5.4.

1. Note that if G is a finite group, then by the counting formula,

|G/N| = |G|/IN].
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2. The group operation on G/N can equivalently be defined by
(aN)- (bN) ={zy:x € aN,y € bN},

i.e., the product of cosets is the literal set of products of the elements in
the cosets. This is the same as our previous definition by the same kind
of calculation as in the proof of Lemma 5.3: if z = an; and y = bny, then

xy = anibng = ab(b"*nyb)ny € abN.

Example 5.5. Let G = Z/67Z, and let N = {0,3}. Then G/N consists of the
cosets

N={0,3}=3+N, 1+N={1,4}=4+N, 2+N={2,5}=5+N.

The coset {0,3} is the identity, and the group operation is commutative and
given by

{1,4} +{1,4} = {2,5}, {1,4}+{2,5} ={0,3}, {2,5}+{2,5} ={1,4}.
The quotient group G/N is isomophic to Z/3Z.

Example 5.6. Let G and H be groups, and let NV be the subgroup of G x H
given by
N={(g,1g) : g€ G} ~G.

Then
G x H/N ~ H,

via the isomorphism (g,h)N = (1g, h)N — h.

Example 5.7. Let G = Z /47, and let N = {0, 2}, which is isomorphic to Z/27Z.
Then G/N also has two elements so it is isomorphic to Z/27Z. In this case,

G %N x G/N

since Z/4Z is not isomorphic to Z/27Z x Z/27.

5.2 First isomorphism theorem [2.12]

Theorem 5.8 (First isomorphism theorem). Let ¢: G — G’ be a homomor-
phism of groups with kernel K. Then G /K is isomorphic to im(p).

Proof. The isomorphism is given by

P(aK) = p(a).

This is well-defined and injective because K is the kernel. It is surjective by
definition of the image of . It is a group homomorphism because

?((aK) - (0K)) = 2((ab)K) = @(a)p(b) = P(aK)P(bK). 0
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Example 5.9. The kernel of the homomorphism ¢: R* — R* given by

pla) =z

is {£1}, and the image is R, the subgroup of positive real numbers. Thus,
R*/{£1} ~ Rs.

Example 5.10. Consider the homomorphism ¢: Dy — Z/47Z given by

g 1lr [ s|rs]r?s | ris

wlg) {0202 |2]0| 2 | 0

We see that ker(p) = {1,7%,rs,73s}. The two cosets of ker(yp) are
{1,7% rs,r3s} and  {r,r3 s,r%s}.

The quotient D4/ ker(y) is isomorphic to Z/2Z, which is also isomorphic to the
image {0,2} C Z/4Z.

Example 5.11. (Artin, Exercise 2.8.6) Suppose ¢: G — G’ is a nontrivial
homomorphism of groups with |G| = 18 and |G’| = 15. What is the order of its
kernel?

Solution. We have G/ ker(p) ~ im(y), so

18/| ker(p)| = |im(p)|.

Since im(¢p) is a subgroup of G’, the order of im(yp) is a divisor of |G'| = 15.
From the above displayed equation, | im(¢)| also divides 18.

Thus, |im(p)| divides ged(15,18) = 3, and by assumption |im(p)| # 1, so
|im(¢p) = 3|. This gives us |ker(¢)| = 6.

5.3 Quotient map [2.12]

Proposition 5.12. Let N be a normal subgroup of G. There is a canonical
surjective homomorphism
m: G— G/N

given by 7(g) = gN. The kernel of m is N.

5.4 Correspondence theorem [2.10]

Let ¢: G — G be a homomorphism of groups. We study the relationship
between
{subgroups of G} and {subgroups of G'}.

We first observe the following way to go between them.

Proposition 5.13. Let p: G — G’ be a homomorphism with kernel K.
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1. If H is a subgroup of G, then o(H) = {p(h) : h € H} is a subgroup of G'.
2. If H' is a subgroup of G', then
¢ '(H)={heG:ph)ec H}
s a subgroup of G which contains K.

Proof. The first statement is the fact that the image of a homomorphism is a
subgroup, which we have seen before.

For the second part, we check closure, and the other group axioms are similar.
Suppose hi, ha € ¢ 1(H). Then

@(h1ha) = @(h1)p(hs) € H',

where we have used p(hy),p(hs) € H' and the closure condition for H'.
In addition, we see that
K Co '(H)

because p(a) = 1g € H' for all a € K. O
Remark 5.14.

1. Note that the method in 2. above only lets us obtain subgroups of G
containing K.

2. The method in 1. does not in general give us all subgroups of G’ either.
For example, if p: R* — R* is given by
p(r) = a7,

the entire group R* is not equal to ¢(H) for any subgroup H of R*| since
the image of ¢ consists of positive real numbers.

However, if ¢ is surjective, then we have the following theorem.

Theorem 5.15 (Correspondence theorem). If p: G — G’ is a surjective ho-
momorphism with kernel K, then the map

{subgroups of G containing K} — {subgroups of G’}
H— ¢(H)

18 a bijection with inverse
o N(H) + H'.
Example 5.16. Consider the homomorphism ¢: C* — C* given by

o(z) = 22

Here K = {#£1}. The subgroup R* of C* contains K, and it corresponds to
the subgroup R+ of C* consisting of positive real numbers.
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Corollary 5.17. For a normal subgroup N of G, the subgroups of G/N corre-
spond to the subgroups of G which contain N.

Proof of correspondence theorem.

1. For H' a subgroup of G, we show that p(¢~*(H')) = H'. By definition of
@ Y(H"), we have
plp™'(H)) C H'.

Since ¢ is surjective, for each h’ € H’, there exists h € G such that
©(h) = h'. By definition again, h € ¢~ 1(H). Thus,

W =p(h) € p(p~ ' (H)),
so H C (e~ (H)).

2. For H a subgroup of G containing K, we show that ¢~!(p(H)) = H. By
definition, we have

H C ¢ (p(H)).

Now suppose g € ¢~ !(p(H)). This means that ¢(g) € p(H), which by
definition means that ¢(g) = ¢(h) for some h € H. This means that
g € hK, but since K C H, this implies

g€ hK CH.

Thus ¢~ ' (¢(H)) C H. O
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6 Jan 28: Group actions

6.1 Correspondence theorem [2.10]

The correspondence between subgroups also gives us some information about
normal subgroups.

Theorem 6.1 (Correspondence theorem). If ¢: G — G’ is a surjective homo-
morphism with kernel K, then the map

{subgroups of G containing K} — {subgroups of G’}
H— p(H)

s a bijection with inverse
o N (H') « H'.

Theorem 6.2 (Correspondence theorem, cont’d). If H and H' are correspond-
ing subgroups, then H is normal if and only if H' is normal.

Proof.

1. Suppose H' is normal. Then for any h € p~1(H’) and g € G, we have

o(ghg™) = o(g)e(h)p(g) " € H',

where we have used ¢(h) € H' and the fact that H’ is normal. (This
implication does not require ¢ to be surjective.)

2. Suppose H is normal. Then for any ¢’ € G’ and h € H, we have

g'e(h)g ™" = plghg™") € p(H),
where g € G is some element such that ¢(g) = ¢’. Here we have used

surjectivity of . O

6.2 Symmetry

Example 6.3. Recall that S, is the set of bijective maps from {1,2,...,n} to
itself.

Example 6.4. Recall that

GL, (R) = {invertible n X n matrices A with real entries}

= {bijective linear maps f: R" — R"}.

A linear map is a function which preserves the vector space structure on R"™,
ie.,

flau+bv) = af(u) +bf(v).

The matrix A corresponds to the linear map f(v) = Av.
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Example 6.5. The dihedral group D, is the group of symmetries of a regular
n-gon A;As--- A,. What we really mean is

D,, = {isometries from A; A, ... A, to itself}.

Here, an isometry of the plane is a map f: R?> — R? which preserves dis-
tance, i.e.,

1f(w) = f(0)]| = [lu = o]l

for all u,v € R2.

Not all isometries are linear maps (and not all linear maps are isometries),
but all of the elements of the dihedral group are linear maps.

Here are the elements of D,, in matrix form. Suppose that A;As... A, is
centered at (0,0), and 4; = (1,0).

The element 7" is a rotation by 6 = 27k/n around the origin, so

k_ [cos(27rk/n) sin(27rk'/n)}
sin(2rk/n)  cos(2mwk/n)

The element s is reflection across the z-axis, so it sends (z,y) to (z, —y), so

|10
s=1o _1|-
The other reflections are

ohg [cos(Zﬂk‘/n) sin(27k /n) }
sin(2rk/n) —cos(2wk/n)|"

6.3 Group actions [6.7]

In the previous subsection, we saw that many groups we’ve seen consist of
bijective maps from some set to itself, which preserve some additional structure
on the set.

Another example of this is the set of automorphisms of a group G, which
are the bijective maps from G to itself which preserve the group structure.

Definition 6.6. Let S be a set and let G be a group. An action of G on S is
amap x: G x S — S satisfying

1. 1xs=sforall seS.
2. (associativity) (gh) * s = g * (hx s) for all g,h € G and s € S.

Given an action of G ond S, every element g € G can be viewed as a bijective
map
g:S—=S5, s—=gxs.

It is bijective because the axioms imply that g=': S — S is its inverse:
gx(g lxs)=1xs=s VseS.
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Example 6.7. The map

x:GxG—G, gxa=gag '

is an action of G on G itself. This is G acting on itself by conjugation. We
check that it satisfies the group action axioms.

1. 1*a=1al =a for all a € G.

2. (gh)*a = (gh)a(gh)~! = ghah=lg=' = g * (hah™') = g x (h * a).
In this case, every element g acts by an automorphism of G.
Example 6.8. The map

x: GxG—G, gxa=ga
is also a group action. We check associativity:
(gh) * a = gha = g * (ha) = g * (h % a).

In this, the elements g don’t act by automorphisms, only bijections.

6.4 Orbits and stabilizers [6.7]
Let G be a group acting on a set S.

Definition 6.9. Let s € S. The orbit of s is
Os ={s' € S:5 = gs for some g € G}.
We can define an equivalence relation on S by
s~ &' if s = sg for some g € G.

Then the orbits O, are the equivalence classes of .S under this equivalence rela-
tion. The orbits of the action of G on S partition S.

Example 6.10.

1. Consider the action of R* on the set R given by ¢ x x = cx. The orbit of
x = 01is {0}, and the orbit of any nonzero z is R — {0}.

2. Consider the action of R* on R? given by ¢ (x,y) = (cz,c ty). The
orbits are

{(070)}7 {(JZ,O) JJ#O}, {(07y) y#O}, {(1‘,y) :a:y:a}
for all nonzero real numbers a.

Definition 6.11. A group action is transitive if there is only one orbit, i.e., for
any two elements s, s’ € S, there exists g € G such that s’ = gs.
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Definition 6.12. Let s € S. The stabilizer is
Gs={g€G:gs=s}

It is the set of elements of G which fix s. The group action axioms imply that
G, is a actually a subgroup of G.

Example 6.13. Consider the action of the dihedral group G = Dg acting on
the set of vertices S = {A1, As,..., Ag} of a regular hexagon. This action is
transitive, so the orbit of A; is the entire set

O, ={A1, A, ..., As}.

The only elements of Dg which fixes A; are the identity and reflection across
OAl. Thus

Ga, ={1,s} = (s).

The stabilizers of the other vertices are also groups of order 2.

Lemma 6.14. Let H be a subgroup of a group G. For any element a € G, the
subset
aHa ' ={g€ G:g=aha™" for some h € H}

is also a subgroup of G.

Proposition 6.15. Let G be a group acting on a set S, and let s € S. Then
for any a € G, the stabilizer of s' = as is the conjugate subgroup aGsa™".

Proof. Let g € G. Note that

gs' =5 = gas=as < a'gas=5 <= a'gac G, <= g€ aG.a .
O

6.5 Operation on cosets [6.8]

Let G be a group, and let H by any subgroup of G. Let G/H denote the set of
left cosets of H.

Following Artin, we write [C] to denote a coset C' when viewed as an element
of the set G/H. We have an action of G on G/H defined by

9lC1 = [9C]

where gC = {gc: c € C}.
This action can equivalently be defined by glaH] = [gaH].

Proposition 6.16. The action of G on G/H is transitive and the stabilizer of
the coset [H] is the subgroup H.

30



Example 6.17. Let G = Ss, H = (y) = {1,y}. Then
G/H = {{1,y} {z,zy}, {z*, 2%y} }.
The element 2 acts by a 3-cycle
{1y} = [{z,2y}] = [{2?, 2%y}] = {1, 93]
The element y fixes [H] = [{1,y}], and swaps
{z,zy}] & [{2? 2%y},

The stabilizer of the element [{1,y}] € G/H is the subgroup H = {1,y} C G.
Note that left multiplication by y does not fix the elements of {1, y}, rather,
it fixes the entire coset [{1,y}].
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